

BE FRUITS™

Specific wine yeast to reveal fruity esters in white and rosé with minimum SO₂, H₂S and acetaldehyde production.

ORIGIN AND APPLICATION

IOC BE FRUITS™ is the result of an innovative technology for selecting yeasts. It produces no to low SO₂. A genuine tool to reveal fruity esters (red fruits, pineapple, citrus notes) in white or rosé wines. Furthermore, it helps to reduce the acetaldehyde formation which readily bind sulphites.

IOC BE FRUITS™ is an exceptional tool to produce clean wines, conveying intense fresh fruit aromas while limiting sulphite contents.

MICROBIAL AND OENOLOGICAL PROPERTIES

- For white and rosé wines
- Saccharomyces cerevisiae
- Factor killer: active K2.
- Alcohol tolerance: medium (14 % vol).
- Nitrogen requirement: low
- Ensure regular and constant fermentations between 12°C and 24°C
- Optimal conditions for the fruity ester expressions: Must clarification: 20-80 NTU; Fermentation T°: 12°C-15°C
- Lag phase: short
- Fermentation speed: moderate to fast
- Glycerol production: moderate
- SO₂ production: low to none
- H₂S production: low to none
- Acetaldehyde production: very low
- Foam production: low

- PACKAGING AND STORAGE · Polyethylene laminated bags of 500 g vacuum packed.
- Store in a cool and dry place. When open, the production must be quickly used.

INTENSITY OF FRESH FRUITY AROMAS: USE TO REVEAL AND ENHANCE ESTERS

IOC BE FRUITS™ produces more ethyl and acetate esters (generally associated with fresh fruit aromas, strawberry, confectionery / candy and citrus aromas) without overwhelming the varietal aroma contribution from compounds such as thiols.

The pure expression of fruit aromas is emphasised by the *IOC BE FRUITS*™ properties to produce minimal sulphur compounds, whereas most yeasts can accumulate sulphites from sulphates, in more or less significant quantities, depending on the yeast and fermentation conditions; *IOC BE FRUITS*™ does not have this capacity.

SULPHITE MANAGEMENT IN WINES THROUGH THE ACETAL DEHYDE MANAGEMENT

Most yeast can produce variable quantities of acetaldehyde during fermentation. This may (but not only) occur when reacting to pre-fermentation sulphite additions.

However, acetaldehyde is the main compound binding SO₂ in wines, which often results in increases in the dosages to obtain a sufficient free SO₂ concentration, thus total SO₂ can be much higher.

IOC BE FRUITS™ does not produce high levels of acetaldehyde and consequently helps to limit sulphites and maximizes the action of SO₂.

INSTRUCTIONS FOR USE

Dosage Rate:

- 25g/hL of Active Dried Yeast (this will provide an initial cell population of approximately 5 x106 viable cells/mL)
- 30g/hL of Go-Ferm Protect® / Go-Ferm Protect Evolution™
- Nitrogen source from the Fermaid[™] range

Procedure for 1000L ferment.

- 1) Add 300g of Go-Ferm Protect® / Go-Ferm Protect Evolution™ to 5L of 40-43°C clean, chlorine free water. Stir until an homogenous suspension free of lumps is achieved.
- 2) When the temperature of this suspension is between 35-40°C, sprinkle 250g of yeast slowly and evenly onto the surface of the water, whilst gently stirring. Ensure any clumps are dispersed.
- 3) Allow to stand for 20 minutes before further gently mixing.
- 4) Mix the rehydrated yeast with a little juice, gradually adjusting the yeast suspension temperature to within 5-10°C of the juice/must temperature.
- 5) Inoculate into the must.

Further Notes

- Steps 1-5 should be completed within 30 minutes.
- It is best to limit first juice/must volume addition to one tenth the yeast suspension volume and wait 10 minutes before the addition to juice.
- To minimize cold shock, ensure temperature changes are less than 10°C.
- It is recommended that juice / must be inoculated no lower than 18°C.
- It is recommended to use complex nutrition nitrogen source, such as either Fermaid AT™ or Fermaid O™.

